ERRATA

CHEMISTRY LETTRS, pp. 299-302, 1990

The Effect of Polysaccharide Adsorption on Surface Potential of Phospholipid

Monolayers Spread at Water-Air Interface

Adam BASZKIN, Veronique ROSILIO, Francis PUISIEUX, Genevieve ALBRECHT, and Junzo SUNAMOTO †

Physico-Chimie des Surfaces et Innovation en Pharmacotechnie UA CNRS 1218, Université Paris-Sud, 5 rue J.B Clément 92296 Châtenay-Malabry, France

†Department of Polymer Chemistry, Kyoto University, Kyoto 606

Symbols in captions of Figs. 3 and 4 should be read as follows. These changes do not affect the contents of results and discussion.

- Fig.3. Evolution of the surface potential $\Delta\left(\Delta V\right)$ with increasing cholesterylpullulan concentration in the aqueous subphase:
 - •: Surface potential ΔV of CHP at the water-air interface in the absence of egg phosphatidylcholine, O: Monolayer density (δ)=2.03 x 10¹³ molecules/cm²; the initial surface potential (ΔV_i) before polysaccharide addition was 69 mV,
 - Δ : δ=2.98 x 10¹³ molecules/cm²; Δ Vi = 153 mV,
 - $\Delta:\delta=4.06 \times 10^{13} \text{ molecules/cm}^2;$ $\Delta Vi = 195 \text{ mV},$
 - ■: δ =1.015 x 10¹⁴molecules/cm²; Δ Vi = 276 mV,
 - $\Box:\delta=2.03 \times 10^{14} \text{ molecules/cm}^2;$ $\Delta V_i = 330 \text{ mV}$

- Fig.4. Evolution of the surface potential $\Delta\left(\Delta V\right)$ with increasing cholesteryl-amylopectin concentration in the aqueous subphase:
 - $\bullet\!:\!\text{Surface}$ potential ΔV of CHA at the water-air interface in the absence of egg phosphatidyl-choline,
 - O:Monolayer density $(\delta)=2.03$ x 10^{13} molecules/cm²; the initial surface potential (ΔVi) before polysaccharide addition was 85.5 mV,
 - $\Delta:\delta = 2.98 \times 10^{13} \text{ molec/cm}^2;$ $\Delta V_i = 120 \text{ mV},$
 - $\Delta\!:\!\delta\!=\!4.06~\textrm{x}~10^{13}~\textrm{molec/cm}^2;$ $\Delta\!V\!_{i}=\!168~\textrm{mV},$
 - ■: δ = 1.015 x 10¹⁴ molec/cm²; Δ Vi = 305 mV,
 - $\square: \delta = 2.03 \times 10^{14} \text{ molec/cm}^2;$ $\Delta V_1 = 330 \text{ mV}.$